Search This Blog

Showing posts with label contamination. Show all posts
Showing posts with label contamination. Show all posts

Tuesday, February 21, 2012

New Radiation Detector: Rad-DX

The Rad-DX is the newest addition to the D-tect family of rugged radiation detectors, and has capabilities unlike anything else on the market.  The Rad-DX is a lightweight fixed-mount radiation detector and dose rate monitor, perfect for mounting on a wall, ceiling, or gate. 

The Rad-DX operates on the new D-tect SensorNet - an automatic communication network that allows users to monitor a full network of Rad-DXs as long as they are in range of a single Rad-DX system. The Rad-DX units will automatically form an intelligent, self-healing mesh network, allowing them to be constantly connected to each other as well as to the user network.
Rad-DX software
The Rad-DX is designed to easily integrate into existing networks via WiFi or Ethernet.  Each unit can be controlled and monitored by a PC on the network or across the internet on any PC, Smartphone, or Tablet.  The network is 128-bit encryption protected and monitoring can be conducted in real-time or past event logs can be reviewed.  You can also monitor Rad-DXs on a integrated floor plan or map display providing an intuitive understanding of the location of a radioactive source. Dose rates can be viewed in multiple graph formats. 
The Rad-DX can be controlled by remote PC or tablet
Like the rest of the D-tect radiation products, a sensitive scintillation detector allows the Rad-DX to detect even faint sources of radiation within 1 second. Directionality is also available so you can track the motion of radiation threats.  The Rad-DX is also IP65 rated for both indoor and outdoor operation.  The Rad-DX will be available in March 2012.  For more information, visit the Rad-DX page on the D-tect Systems website.
Multiple versions of the Rad-DX are available

Tuesday, August 16, 2011

Relative Biological Effectiveness - What Kind of Radiation is the Most Risky?


As you read this right now, you are being bombarded by radiation – cosmic rays flying in from the dark reaches of space, photons streaming out of the hot core of the earth, and miniscule particles issuing from your computer and other objects around you. But not all radiation is created equal. A new field of study has unearthed the fact that different kinds of radiation affect us differently.  

Although quite a mouthful, this study is called Relative Biological Effectiveness (abbreviated RBE). It seeks to put all radiation on an equal plane and find out what kind poses the highest risk to our organism. Higher values of RBE mean that certain types of radiation are more harmful. Ionizing radiation, which is made up of alpha, beta, and gamma rays, constitute electrically charged particles that interact with matter. These interactions can cause ionization, which refers to changes within the structure of an atom that can cause it to destabilize or behave differently.
Alpha particles are the largest kind of ionizing radiation, each consisting of two protons and two neutrons. Because they are highly charged and quite large, they are quickly stopped by as little as 4 cm (1.4 inches) of open air or a sheet of paper1. Beta particles are much smaller, meaning they can penetrate further: through 9 meters (19 ft) of open air or 11 mm (.4 inches) of body tissue. Gamma rays are high-energy photons, meaning that they penetrate much further and interact differently with matter than alpha or beta particles. Thick, dense materials such as lead are necessary to block gamma rays. Another related form of radiation is neutron radiation, which is commonly referred to as indirectly ionizing radiation. Free neutrons, which are emitted from nuclear materials such as uranium and plutonium, have about a quarter of the mass of an alpha particle2. Neutrons are not charged but readily cause ionization by knocking away electrons or slamming into atomic nuclei. The neutral charge of these fast-traveling neutrons also allows them to penetrate much further into most materials than other types of ionizing radiation, even through many feet of concrete.
Source: American Nuclear Society
 To test how damaging different types of radiation is on the human body, scientists expose living tissue to equal amounts of energy from each type. Surprisingly enough, scientists have found that beta and gamma radiation are nearly equally damaging, so the RBE value of beta and gamma radiation is 1. It gets more complicated from here, though. Alpha and neutron radiation have different RBE values depending on what kind of cells are exposed to them. The RBE for bacteria is 2-3, but can be 6-8 for more complex cells like those found in the human body. This means that a certain amount of alpha radiation is 6-8 times more damaging then the same amount of beta radiation. Neutrons are even more damaging with a RBE of 4-6 for bacteria and 12-16 for complex cells3.  
The high RBE values of alpha and neutron radiation should make us think twice about how we deal with these types. Because incoming alpha particles are stopped by a single layer of skin, they can’t do much damage unless they get in our bodies. That’s why breathing in alpha radiation (from radon or radioactive dust) or ingesting it (in contaminated food or water) is so dangerous. When alpha particles get to really important cells in our organs, the RBE can shoot up: scientists have measured RBE values of 1,000 for alpha radiation inside hamsters4. Neutron RBE values are more constant because neutrons penetrate just about everything, but they are also much harder to contain. That’s why materials that emit neutrons are highly controlled, very hard to transport, and large neutron sources are only found in research facilities and power plants.
The Rad-ID device by D-tect Systems has a special way of finding neutron radiation. A container filled with Helium-3, a rare and stable gas, is included with other radiation detectors inside the Rad-ID. As neutrons shoot through the detector, they collide with some of the He-3 atoms, causing them to change into charged particles. These particles are quickly identified and counted by a detector and a measurement of this radiation is sent to the user. Since neutron sources give off varying levels of gamma radiation, the Rad-ID can also identify these materials and let the user know what they are dealing with.
The Rad-ID can detect neutron radiation sources.
____________________________________________________________________________
D-tect Systems is a supplier of advanced radiation and chemical detection equipment sold around the world. www.dtectsystems.com.
  

Wednesday, May 4, 2011

Radiation Contamination in Food and Water: What's the Risk?

As Japanese emergency workers continue to pump out thousands of gallons of contaminated water from the damaged reactors of the Fukushima Power Plant, radiation contamination in food and water has emerged as a new focus of the international media.  

Before explaining the risks of food and water contamination, it’s important to understand the difference between radiation exposure and radiation contamination.  The United States Center for Disease Control (CDC) defines exposure and contamination with the following:

A person exposed to radiation is not necessarily contaminated with radioactive material. A person who has been exposed to radiation has had radioactive waves or particles penetrate the body, like having an x-ray. For a person to be contaminated, radioactive material must be on or inside of his or her body. A contaminated person is exposed to radiation released by the radioactive material on or inside the body. An uncontaminated person can be exposed by being too close to radioactive material or a contaminated person, place, or thing.”


As the CDC implies, there are many ways that radiation can enter the body for contamination to occur.  Radioactive materials that enter into digestive tract can do damage while they reside in the body, but most of these materials pass through quickly. Radiation that gets trapped in other areas of the body, such as radioactive dust being breathed in and lodged in the lungs, can cause serious threats because the longer the radiation resides in the body, the more harm it can do.

So what are levels of radiation we actually need to worry about in food or water? The unit of measurement used for quantifying radiation in food and water is the Becquerel (Bq) and defined as the activity of a radioactive material in which one nucleus decays per second. More dangerous sources of radiation give off higher readings, and amounts decrease as radioactive isotopes decay. The Becquerel is a very small quantity of radiation; the human body itself produces over 4000 Bq per second. The standards set by the United States Food and Drug Administration (FDA) for food and water is about 375 Bq/lb (170 Bq/kg).

Recently Japan reported a reading of 463 Bq/lb (210 Bq/kg) in Tokyo’s tap water, leading to widespread fear and a government advisory against giving tap water to children (who are more susceptible to radiation and have lower exposure limits). Since this incident, the radiation in Tokyo’s tap water has returned to safe limits. Radiation in food has also been a problem, especially since much of the Fukushima Prefecture near the crippled nuclear plant is dedicated farmland.  Widespread bans have gone into place on the sale and consumption of crops from affected areas, as well as seafood caught in the ocean near the plant. Much of the radiation present in the contaminated food and water is Iodine-131, which has a half-life (meaning that half of a quantity of the material has broken down and is not longer radioactive) of only 8 days. This means that this type of radiation won’t be around for long, but the fear of radiation is more likely to hurt the Japanese economy as buyers shy away from food that they think might still have some contamination.

Source: Associated Press

Although the fear that Japanese radiation in dangerous amounts will end up in other countries is often unfounded, we can’t let down our guard just yet. Japan provides 4% of US food imports, including many seafood products that can have concentrated levels of radiation, such as shellfish and seaweed.

So how can we assure that our food and water is contamination free? Finding trace amounts of radiation in food and water is often difficult because products are usually shipped in large containers that shield radiation. Common radiation detectors such as Geiger Counters just aren’t sensitive enough to detect radiation at these levels. The FDA works to safeguard our food supply by using the MiniRad-D, a hand-held radiation detector, to search for radiation. The MiniRad-D uses a scintillation detector, which is over 100 times more sensitive than a Geiger counter, and because it can pick up radiation from tens of meters away, it can be used to scan whole containers of food at once. 

The MiniRad-D radiation detector

The procedure of scanning food is becoming increasing popular as Japan increases its exports. According to a recent New York Times article, even some fish markets and high-end restaurants have begun radiation detection procedures to ensure the safety of their customers. Knowing for sure that food and water is clean is a big draw for these businesses as Japan’s nuclear clean-up continues to make headlines.

So, although the direct danger of radiation contamination in food and water is very low, the effects of the nuclear crisis are sure to be felt for years to come. And as many companies involved with food imports are discovering, peace of mind is not only attainable, but extremely valuable. With the right equipment, good information, and correct procedures, this peace of mind is truly available to everyone.

D-tect Systems is supplier of advanced radiation and chemical detection equipment sold around the world. www.dtectsystems.com.